Updates on Traveling Salesman in Banach Spaces

Matthew Badger - UConn ξ
Sean McCordy - Carnegie Mellon Spring AMS Meeting April 2021

X metric space
$\Gamma \subset X$ is a cove if $\Gamma=f([0,1])$ for some cts map $f:[0,1] \rightarrow K$
f is a parameterization of Γ

"Intrisic Length"
$\left.\begin{array}{c}\text { Partitions of } \\ {[0,1]}\end{array}\right\}$

$$
\left.\begin{array}{c}
\text { "Intrisic } \\
\text { Length" } \\
\operatorname{var}(f)=\sup \left\{\sum_{i}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|:\right. \text { Partitions of } \\
{[0,1]}
\end{array}\right\}
$$

"Extrinsic Length"

$$
\mathcal{H}^{\prime}(\Gamma)=\lim _{\delta \downarrow 0} \inf \left\{\sum_{i} \operatorname{diam} U_{i}\right.
$$

$\therefore \Gamma \subset U_{i} U_{i}$ $\left.\operatorname{diam}_{i} U_{i} \leq \delta\right\}$
1-dimensional Hausdorff Measure

Wazewski's Theorem
X is a metric space
ICX nonemply
T.F.A.E.
(1) Γ is a rectifiable corve, i.e. $\Gamma=f([0,1])$ for some f with $\operatorname{var}(f)<\infty$
(2) Γ is compact, connected, and $H^{\prime}(\Gamma)<\infty$
(3) Γ is a Lipschitz curve, $\Gamma=f([0,1])$
for some f s.t. $|f(x)-f(y)| \leqslant L|x-y|$

$$
l_{p}=\left\{\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in \mathbb{R}^{\omega}: \sum_{i}\left|x_{i}\right|^{p}<\infty\right\}
$$

- Banach space when $1 \leqslant p<\infty$

$$
|x|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}, \quad \operatorname{dist}_{p}(x, y)=|x-y|_{p}
$$

- Separable $(1 \leqslant p<\infty)$, reflexive $(1<p<\infty)$
- increasing:

$$
p<q \Longrightarrow l_{p}<l_{q}
$$

Idenity is 1 -Lipschitz embedding: $|x|_{q} \leq|x|_{p}$
Corollam Γ rectifiable in $\ell_{p} \Longrightarrow \Gamma$ rectifiable in l_{b}

$$
\begin{aligned}
\mathcal{H}^{\prime}(\Gamma) & =|(1,1)-(0,0)|_{p} \\
& =2^{1 / p}
\end{aligned}
$$

- rectifiable in each l_{p} - shorter as $p \longrightarrow \infty$
- In finite-dimensions, rectifiabilty independent of norm but length of curve depends on norm
- What about in infinie-dimensions?

In l_{1}, there are infinitely mong geodesics between $(0,0)$ and $(1,1)$

Example (B-McCordy) Related Example by Edelen - Nater-Vallorta For all $1<p<\infty$, there exists a corve Γ in lp s.z. $\mathcal{X}_{l_{p}}^{\prime}(\Gamma)=\infty$ and $f_{l_{q}}^{\prime}(\Gamma)<\infty$ for all $q<p$.

Add blip of relative
height η_{1} in e_{2}-direction

Add blips of relative height η_{2} in e_{3} direction

Add blips of relative height η_{3} in e_{4} direction...
 For all $1 k P<\infty$, there exists a cove Γ in l_{P} sit. $H_{f_{p}^{\prime}}^{\prime}(\Gamma)=\infty$ and $H_{f}^{\prime}(\Gamma)<\infty$ for all $z>P$
\square
$\Gamma \subset \ell_{p}$ relative heights η_{i} - Rectifiable \Leftrightarrow $\sum \eta_{i}^{p}<\infty$

$$
H_{l p}^{\prime}(\Gamma) \approx \exp \left(\sum_{i} \eta_{i}^{p}\right)
$$

- If rectifiable, then Γ is Allows regular
Choose $\eta_{i}=\frac{\delta}{i \log \left(i+i_{0}\right)}$ with $\delta>0, i_{0} \geqslant 1$ so $\tau_{1} \leqslant \frac{1}{16}$

$$
y_{l_{p}}^{\prime}(\Gamma)=\infty, \quad \text { but } y_{l}^{\prime}(\Gamma)<\exp \left(\sum_{i} \frac{\delta^{y^{/ p}}}{i \log \left(x_{i} 0_{0} z_{p}\right.}\right)<\infty
$$ when $p<q$

We still do not have a complete picture!

$$
l_{p}^{2}=\left(\mathbb{R}^{2}, \mid \cdot I_{p}\right)
$$

vo Koch curve

- add blips in " 1 " drectuas
- relate heights η_{i}

$$
\begin{aligned}
& H_{l p}^{\prime}(\Gamma) \approx H_{l_{2}}^{\prime}(\Gamma) \\
& \approx \exp \left(\sum_{i} \eta_{i}^{2}\right)
\end{aligned}
$$

ℓ_{p} infinik-dimensicus

vol Koch cove -add blips in new $c_{\text {it }}$ drectias - relative heights " η_{i} "

$$
\mathcal{H}_{l}^{1}(\Gamma) \approx \exp \left(\sum_{i} \eta_{i}^{P}\right)
$$

Length gained by adding blips sensative to direction of blip!
Question: Can you boild Γ, $\mathbb{X}_{p}^{\prime}(\Gamma) \approx \exp \left(\sum_{i} \eta_{i}^{2}\right), q \in[z, p]$?

Analyst's Traveling Salesman Problem
P. Jones (1990): Given a set E in a metric space X, decide whether or not E is contained in some rectifiable curve Γ. If so, find a curve $\Gamma \supset E$ "short as possible".

Full solutions for sets in
\mathbb{R}^{2} (P. Jones, 1990)
l^{2} (R.Schul, 2007)
Radon measures in \mathbb{R}^{n} (A. B., R.Schol 2017)
\mathbb{R}^{n} (K. Ohikidlo, 1992)
Carnot Groups (S.L: 2019)
Graph Inverse Limit Spaces (G.C. David, R.Schul Zo17)

Partial Sorvey (Continued)
I. Hahlomaa (2005)

- Sofficient Conditions for $\exists \Gamma \supset E$ in arbitrang metric space X
- Condition is not necessang in $\ell_{1}^{2}=\left(\mathbb{R}^{2}, 1 \cdot 1_{1}\right)$
G.C. David, R.Schul (2019)
- Necessary Conditions for Γ to be rectifable
in arbitrey metric space X when Γ doubling
N.Edelen, A.Naber, D. Valtorta (2019)

Reifenter's Algoritim

- Sufficient Conditions for \exists bi-lipschitz surface $\supset E$ in ℓ_{2} and for $\exists_{b i-L i p}$ corve $\supset E$ in $l_{p}, 1<p<\infty$
P. Jones β number in a Banach syce "unilateral linear approximation"

Set E
window $Q \quad \beta_{E}(Q, L)=\sup _{x \in E \cap Q} \frac{\operatorname{dist}(x, L)}{\operatorname{diam} Q} \in[0,1]$
line L

$$
\beta_{E}(Q)=\operatorname{mf}_{L} \beta_{E}(Q, L)
$$

Jones-Okikiolu Theorem in Banach spaces
($X, 1 \cdot 1$) finite-dimensional Bunch space Δ system of dyadic coles (choice of basis) $E \subset X$ bounded set
$\exists \Gamma \supset E$ with $f^{\prime}(r)<\infty$ iff

$$
S_{E}=\sum_{Q \in \Delta} \beta_{E}(3 Q)^{2} \cdot \operatorname{diam} Q<\infty
$$

Moreover, ${ }^{Q \in \Delta}$ can find Γ with $X^{\prime}(T) \approx \operatorname{diam} E+S_{E}$ where implicit constants only depend on dim X, Δ (crocic of basis) and norm II

Challenges in Infinite - Dimensions
(1) No "Dyadic Cubes" L Many Good Ideas by R.Schul
4 Solution: Use 2^{-k}-nets X_{k} for E and multiresolution families $\left\{B\left(x, 3 \cdot 2^{-k}\right)\right\}_{x \in} X_{k}$
(2) Uncontrolled Overlap

4 If $E=\Gamma$ and $X^{\prime}(\Gamma)<\infty, X_{k}$ locally finite bot can be arbitrarily lame number of balls $B\left(\$, 3.2^{\frac{t}{x}}\right)$ that intersect $B\left(x, 3 \cdot 2^{-4}\right)$
L Soln: Complicated, bot oe fact when this happens β large

Theorem (R.Schul 2007)
$E \subset \ell_{2}$ bounded is contained in rectifiable cove ifs $\sum_{Q \in G} \beta_{E}(Q)^{2} \operatorname{diam} E<\infty$
t. Multiresolution Family for E

Theorem ($B-\mu_{c}$ Curdy 2020/2021) $1<p<\infty$ $\overline{E \subset l_{p}}$ bounded

- If $\sum_{Q \in E} \beta_{E}(Q)^{\min (p, 2)} \cdot \operatorname{diam} Q<\infty$, then $E \subset \Gamma$

Examples show gap btw $\min (p, 2)$ and $\max (p, 2)$ cannot be filled in.
$L_{\text {Modulus of }}$ Smoothness

TModilus of Convexity

Takeaways
(1) Analyst's TSP

Trying to understand what rectifiable corves and their subsets look like
(2) Still open!

We only have solutions in a few metro spaces Evelidean/Carset methods not strong enough
(3) Length gain is sensative to direction In spaces like $l_{p}, p \neq 2$, we don't understand how to effectively estimate length gain Beta numbers are not strong enough

